Adapting CMOS Sensors to Future Vertex Detectors

Marc Winter (IReS/IPHC-Strasbourg)

- Remarks on experimental trends → Limits of existing devices for flavour tagging
- The solution of CMOS sensors:

 — Principle of operation Advantages & Concerns R&D directions Typical performances
- Tracking detector applications foreseen: decided or ambitionned
- Current R&D frontier : signal processing architectures radiation tolerance
- Summary

FEE-06

WHAT IS DRIVING THE R&D

ON CMOS SENSORS ?

Flavour tagging takes growing importance in understanding the dynamics underlying heavy ion and particle physics phenomena \mapsto b, C, τ tagging with High Efficiency & Purity !

► Ex: ILC physics programme → high performance flavour identification is a MUST for most events :

• b, c, τ contained in most final states:

FEE-06

 $\mathbf{t} \to \mathbf{W}\mathbf{b} ; \ \mathbf{W} \to \mathbf{c}\overline{\mathbf{s}} ; \ \mathbf{Z} \to \mathbf{b}\overline{\mathbf{b}}, \mathbf{c}\overline{\mathbf{c}}, \tau\overline{\tau} ; \qquad \chi^{\pm} \to \mathbf{W}^{\pm}\chi^{\mathbf{0}} ; \ \chi^{\mathbf{0}}_{\mathbf{2}} \to \mathbf{Z}\chi^{\mathbf{0}}_{\mathbf{1}};$

→ use b, c, τ decays of Z and W bosons to enhance sensitivity to new physics: background rejection – measurements of $Br(H, X), A_{FB}, A_{LR}$, etc.

• assign EACH track to its vertex origin $(1^{ry}, 2^{ry}, 3^{ry})$ in a POLY-JET environnement (Q_{Vx}, E_{flow}) and establish links between 2^{ry} and 3^{ry} vertices \longrightarrow reconstruct decay chains:

 $\begin{array}{ll} \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \mathbf{t}\overline{\mathbf{t}} \rightarrow \mathbf{b}\overline{\mathbf{b}}\mathbf{W}\mathbf{W} \rightarrow & \geq \text{6 jets} \\ \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \mathbf{t}\overline{\mathbf{t}}\mathbf{H} \rightarrow \mathbf{b}\overline{\mathbf{b}}\mathbf{b}\overline{\mathbf{b}}\mathbf{W}\mathbf{W} \rightarrow & \geq \text{8 jets} \\ \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \mathbf{H}\mathbf{A} \rightarrow \mathbf{t}\overline{\mathbf{t}}\mathbf{t}\overline{\mathbf{t}} \rightarrow \mathbf{b}\overline{\mathbf{b}}\mathbf{b}\overline{\mathbf{b}}\mathbf{W}\mathbf{W}\mathbf{W} \rightarrow & \geq \text{12 jets} \end{array}$

▷▷▷ Aim for an ultra-light, very granular, poly-layer Vertex Detector installed very close to the interaction point

Domain Structure Conditions (Occupancy, radiation) !!!

- **DDD** Existing technologies are not adequate:
 - * CCD (SLD): granular and thin BUT too slow and radiation soft
 - *** Hybrid Pixel Sensors (Tevatron, LHC): fast and radiation hard BUT not granular and thin enough**

CMOS sensors are expected to provide an attractive trade-off between granularity, material budget, radiation tolerance and speed

PRINCIPLE OF OPERATION

AND SPECIFIC FEATURES

OF CMOS SENSORS

p-type low-resistivity Si hosting n-type "charge collectors"
signal created in epitaxial layer (low doping):
Q ~ 80 e-h / μm → signal ≤ 1000 e⁻
charge sensing through n-well/p-epi junction
excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)

Specific advantages of CMOS sensors:

FEE-06

- \diamond Signal processing μ circuits integrated on sensor substrate (system-on-chip) \mapsto compact, flexible
- \diamond Sensitive volume (\sim epitaxial layer) is \sim 10–15 μm thick \longrightarrow thinning to \lesssim 30 μm permitted
- ♦ Standard, massive production, fabrication technology → cheap, fast turn-over
- ♦ As granular and thin as CCDs, BUT faster and more radiation tolerant

Two different ways of reading out the sensor:

◇ Rolling Shutter mode (see below): array is read out row after row

- \hookrightarrow each row is slightly shifted in time w.r.t. previous ones
- ◇ Snap-shot mode (rather suited to imaging): all rows read out at once
 → dead time before/during pulsing all rows and during read-out

Readout

High r.-o. speed, low noise, low power dissip., highly integrated signal processing architecture: * analog part (charge collection, pre-amp, CDS, ...) inside pixel

* mixed (ADC) and digital (sparsification) micro-circuits integrated inside pixel or aside of active surface

Optimal fabrication process:				
* epitaxial layer thickness	* number of metal layers	<mark>∗ yield</mark>		
★ (dark current)	※ cost	Hife time of process		
Radiation Tolerance:				
* dark current	* doping profile	(* latch-up)		
Room temperature operation:				
* minimise cooling requirements	<mark>≭ perfc</mark>	* performances after irradiation		
Industrial thinning procedure:				
* minimal thickness	* individual chips rather the	nan wafers 🛛 💥 yield		

M.I.P. TRACKING PERFORMANCES:

PIXEL & CLUSTER CHARACTERISTICS,

DETECTION EFFICIENCY

Several groups design CMOS sensors for charged particle tracking :

 \Rightarrow BELLE upgrade \mapsto SuperBELLE:

Univ.Hawaï

⇒ STAR upgrades: IReS/IPHC (Strasbourg)

\Rightarrow **ILC (EUDET** \subset E.U. FP-6):

IReS/IPHC (Strasbourg), DAPNIA (Saclay), LPC (Clermont), LPSC (Grenoble), Univ.Roma-3, Univ.Bergamo, Univ. Pisa, RAL, LBL, BNL, Univ.Oregon & Yale (SARNOF) others (?)

Several other groups involved in chip characterisation & detector integration issues


```
R&D for Super BELLE: hits in 1st beam telescope made of 4 CAP-2 sensors exposed to 4 GeV/c \pi^- (KEK)
```


Several MIMOSA chips (Strasbourg et al.) tested on H.E. beams (SPS, DESY) → well established perfo. :

- N \sim 10 e $^ \mapsto$ S/N \gtrsim 20 30 \mapsto ϵ_{det} \gtrsim 99.5 % σ_{sp} \sim 1.5 μm T $_{oper.}$ \gtrsim 40 $^\circ$ C
- Best performing technology: AMS 0.35 μm OPTO (11–12 μm epitaxy; 20 μm option tests in Fall'06)
- Technology without epitaxy also shown to perform well: very high S/N but large clusters (hit separation)
- Macroscopic sensors : MIMOSA-5 (1.9 x 1.7cm 2 ; 1 Mpix), CAP-3 (0.3 x 2.1cm 2 ; 120 kpix)

- Thinning of MIMOSA-5 to 50 μm achieved \mapsto next : 35 μm
- Radiation tolerance \gtrsim 1 MRad, 10 $^{13}e^{\pm}_{10~MeV}$ /cm 2 , 10 12 n $_{eq}$ /cm 2 \mapsto next : \gtrsim 10 13 n $_{eq}$ /cm 2
- Architecture with integrated discri. validated ($\epsilon_{det}\gtrsim$ 99.3 % ; fake \lesssim 10 $^{-3}$) \mapsto next : integrated ADC & Ø
- Architecture with in-pixel memories & delayed r.o. well advanced (CAP/Hawaï, FAPS/RAL, MIMOSA/Strasbourg...)

FEE-06 Established and Potential Applications CMOS Sensors

MIMOSA sensors will equip STAR Heavy Flavour Tagger:

- *** 2008:** analog output, 4 ms frame r.o. time
- st 2011: digital output, \lesssim 200 μs frame r.o. time

▷ similar sensors will equip EUDET (FP-6) beam telescope:

*** 2007:** demonstrator with analog output *** 2008:** final device with digital output

CMOS sensors are also developed for:

- ***** CBM Vertex Detector (FAIR/GSI \geq 2012) \mapsto R&D on MIMOSA sensors for non-ion. rad. tol. (and speed)
- * ILC Vertex Detector \mapsto R&D in France, UK, USA, Italy, ...
- * BELLE Vertex Detector \mapsto R&D in Hawaï

Spin-offs :

- *** Bio-medical imaging :**
 - ⇔ photo-electron detector (MIMOSA Photonis)

⇔ H.E. electron microscope imager ; etc.

- *** Beam monitoring : MIMOTERA (SUCIMA / FP-5)**
- *** Dosimetry**

FEE-06

Geometry: 5 cylindrical layers (R=15 – 60 mm), $\|cos\theta\| \le 0.90$ – 0.96

 $\sigma_{IP} = \mathbf{a} \oplus \mathbf{b}/\mathbf{p} \cdot \mathbf{sin^{3/2}} heta$, with a < 5 μm and b < 10 μm (SLD: a = 8 μm and b = 33 μm)

I $t_{r.o.}$ (occupancy from beamstrahlung e[±]): ¶ 25 μs in L0 ¶ 50 μs in L1 $\Rightarrow \leq 200 \ \mu s$ in L2, L3, L4

Layer	Radius (mm)	Pitch (μm)	t _{r.o.} (μs)	N_{lad}	N _{pix} (10 ⁶)	P ^{inst} diss (W)	P ^{mean} diss (W)
L0	15	20	25	20	25	<100	<5
L1	25	25	50	26	65	<130	<7
L2	37	30	<200	24	75	<100	<5
L3	48	35	<200	32	70	<110	<6
L4	60	40	<200	40	70	<125	<6
Total				142	305	<565	<29

Ultra thin layers: \leq 0.2 % X₀/layerVery low P_{diss}^{mean} : << 100 W (\mapsto minimise cooling)Rad. tolerance (3 yrs): \leq 3·10¹⁰ n_{eq}/cm² - \leq 6·10¹² e_{10MeV}/cm² (150 kRad, 2·10¹¹ n_{eq}/cm²)

INTEGRATION OF SIGNAL PROCESSING FUNCTIONNALITIES

INSIDE PIXEL OR ON SENSOR PERIPHERY

MIMOSA-8: TSMC 0.25 μm digital fab. process (\lesssim 7 μm epitaxy)

- 32 // columns of 128 pixels (pitch: 25 μm)
- 4 sub-arrays featuring AC and DC coupled on-pixel voltage amplif.
- on-pixel CDS
- discriminator at end of each column

Excellent m.i.p. detection performances despite modest thickness of epitaxial layer

 \diamond det. eff. \sim 99.3 % for fake rate of \sim 0.1 % $\,$

 \diamond discriminated cluster multiplicity \sim 3–4

 $\triangleright \triangleright$ Archi. validated for next steps: techno. with thick epitaxy, rad. tol. pixel at T_{room}, ADC, Ø, etc.

Application to ILC: Various FE Architectures

▷ Fast col. // architecture (like MIMOSA-8), allowing to process signal (CDS, ADC, sparsification) during BX:
→ complex, close to technology limits → much design & test effort needed (but quite universal output)

Alternative → 2 phase µcircuit architecture exploiting beam time structure, reducing data flux:
 1) charge stored (eventually sampled) inside pixel during train crossing: O(1) ms
 2) signal transfered and processed inbetween trains: O(100) ms

Different strategies of storage during train crossings:

∴ 20 – 25 μm large pixels with \gtrsim 20 capacitors $\hookrightarrow \lesssim$ 50 μs long snapshots/capacitor

▷ Difficulty: are small capacitors precise enough ?

 \therefore \lesssim 5 μm large pixels with 1 capa.(hit position) and 50 μm large pixels for hit zone selection

 \triangleright Difficulty: can cluster size be \leq 3 pixels ?

 $\supset \supset \supset$

Ensure ϵ_{det} > 99 % with very few fake hits, $\sigma_{IP} \sim$ few μm & double hit separation \Rightarrow distinguish small Q deposits due to: * negative Landau fluctuations (seed)

12

> 3 effective bits OK \mapsto base line: 4 – 5 bits \rightarrow epitaxy thickness of final prod. techno. ????

Read-out frequency : > 10 MHz / column or > 20 MHz / pair of columns Dimensions : 20–30 x 1000 μm^2 / column or 40–60 x 1000 μm^2 / pair of columns Power consumption : \leq 0.5 mW / column or 1 mW / pair of columns

 \hookrightarrow Optimised ADC architecture is still to be found out: flash, semi-flash, succ. approx., Wilkinson, ...

Improving Charge Collection & Signal Proc. Capabilities

- Increase collected charge by enlarging depleted volume:
 - increasing N-well potential (very limited possibilities)
 - enlarging surface of N-wells inside pixels (\mapsto increases capacitance noise)
 - \hookrightarrow use N-well to integrate P-MOS T for signal processing
- Ex: triple-well technology (STM 0.13 μm) (see L.Ratti):
 - ▷ Buried n-channel electrode:

FEE-06

- \diamond Try integrating signal processing $\mu {\rm circuits}$
 - \hookrightarrow self triggered pixels (?)
- ♦ Test structures under study

NMOS NMOS PMOS STI STI STI STI P+ STI PWELL DEEP NWELL P- EPITAXIAL LAYER P SUBSTRATE

- Ex: unidepleted active pixel sensors (see P.Rehak) :
 - Pixels composed of concentric rings of n-wells:
 Can they host P-MOS T for signal processing ?

RADIATION TOLERANCE

AMS-0.35 OPTO (\sim 11 μm epitaxy) \triangleright S/N (MPV) vs fluence and T (tests at CERN-SPS):

Fluence	T = -20 [°] C	$T = 0^{\circ}C$
0	28.4 ± 0.2	26.3 ± 0.2
10 11 n $_{eq}$ /cm 2	25.3 ± 0.2	24.5 ± 0.4
3·10 11 n $_{eq}$ /cm 2	_	23.0 ± 0.2
10 $^{12}~{\sf n}_{eq}$ /cm 2	18.7 \pm 0.2	—

Conclusion: fluences of
$$\gtrsim 10^{12} n_{eq} / cm^2$$
 affordable
(better performances with T < 0°C)
 $\mapsto \epsilon_{det} \sim$ 99.74 \pm 0.08 % (10¹² n_{eq} / cm²; T = -20°C

hightarrow Results show that fluences \gtrsim 1·10¹³n_{eq}/cm² can presumably be accomodated

- Means to Improve Tolerance to Non-Ionising Radiation

Reduce mean free path of signal e^- :

- ***** Reduce pixel pitch (optimise w.r.t. r.o. speed)
- ***** Improve efficiency of charge collection system (pixel design optimisation)
- ***** Optimise operation temperature
- ***** Investigate annealing possibilities

Improve S/N performance :

FEE-06

- ***** Optimise pixel and r.o. architecture
- st Investigate thick epitaxy techno. \mapsto AMS 0.35 OPTO "20 μm " epitaxy option
- ***** Optimise cluster reconstruction algorithms

Equip each detector layer with 2 layers of sensors

- \hookrightarrow \circ 90 % detection efficiency per layer allows 99 % overall detection efficiency
 - \circ double layer \mapsto track mini-segments from loosely selected clusters \mapsto improved detection efficiency
 - st Thinning sensors to ultimate thickness (\sim 35 μm) is particularly valuable
 - * Design mechanical support allowing double sensor layer per detector layer

▶ 3 major effects expected from ionising radiation:

 \diamond Shift of threshold voltages: \propto Nb(holes) created & trapped in gate oxide \propto oxide thickness

 \hookrightarrow aim for \lesssim 10 nm thick oxide (\sim the case for \leq 0.35 μm technologies)

♦ Leakage current in NMOS transistors
♦ Leakage current in N-channel intertransistors

> Aim for short integration time and for $T \leq 0^{\circ}C$

- Improving Tolerance to Ionising Radiation (2/3)

Modified pixel design:

FEE-06

- removal of thick oxide nearby the N-well (against charge accumulation)
- implantation of P+ guard-ring in polysilicon around N-well (against leakage current)

Noise perfomance of pixel adapted to ionising radiation : Noise (e⁻ENC) vs Integration time (ms) for Ordinary and Radiation Tolerant pixels, measured at T = -25° C, $+10^{\circ}$ C and $+40^{\circ}$ C

>>> 1 MRad tolerance demonstrated (esp. at T < 0°) >>>> Room for improvement

Technology related Ionising Radiation Effects (1/2)

Comparison of charge collection efficiency after 10 keV X-Ray irradiation for 2 different technologies

MIMOSA prototypes manufactured in AMI-0.35 and AMS-0.35 OPTO and tested with 55 Fe at T = + 10°C before/after irradiation :

⇔AMI-0.35 : 400 kRad , 3.3 ms integration time

FEE-06

⇔AMS-0.35 OPTO : 1 MRad , 0.7 ms integration time

▷ AMS-0.35 OPTO sensor does not exhibit any observable drop in charge coll. efficiency after 1 MRad

Technology related Ionising Radiation Effects (1/2)

Charge loss consecutive to ionising radiation seems related to positive oxide charge build-up at Si-SiO₂ interfaces ⇒ relatively strong potential depleting P+ coating of N-MOS T → part of the signal electrons get attracted and do not reach the charge collecting diode

The effect seems technology dependent ⇒ different P+ coating of N-MOS T (?)
→ not predictible (fabrication parameter)

FEE-06

SUMMARY

CMOS sensor technology R&D started in 1999 :

- \Rightarrow now assessed quite extensively \rightarrow attractive tracking/vertexing performances well established
 - \Rightarrow ~ ready to equip high precision tracking detectors (provided rad. levels and r.o. speed are not "extreme")
 - \Rightarrow 1st detector made of CMOS sensors should be commissioned in a few years:

⇔ STAR-HFT : 1) 2008, 2) 2011 ⇔ BELLE-VD (≤ 2010 ?) ⇔ EUDET beam telescope : 1) 2007 2) 2008

Wide spectrum of CMOS sensor potential still poorly explored/exploited (e.g. integrated signal processing) :

- Strong, growing, R&D community able to undertake the challenge :
 - $\Rightarrow \sim$ 10 groups involved in chip design $\Rightarrow \gtrsim 10$ groups concentrating on tests and integration issues \Rightarrow several issues poorly covered \rightarrow newcomers ...
- Several demanding mid-term applications under way : \Rightarrow ILC (\sim 2015) \Rightarrow CBM (\gtrsim 2012) \Rightarrow etc.

CMOS sensor technology R&D started in 1999 :

- \Rightarrow now assessed quite extensively \rightarrow attractive tracking/vertexing performances well established
 - \Rightarrow ~ ready to equip high precision tracking detectors (provided rad. levels and r.o. speed are not "extreme")
 - \Rightarrow 1st detector made of CMOS sensors should be commissioned in a few years:

STAR-HFT : 1) 2008, 2) 2011 ⇒ BELLE-VD (≤ 2010 ?) ⇒ EUDET beam telescope : 1) 2007 2) 2008

Wide spectrum of CMOS sensor potential still poorly explored/exploited (e.g. integrated signal processing) :

• Strong, growing, R&D community able to undertake the challenge :

- $\Rightarrow \ge$ 10 groups concentrating on tests and integration issues \Rightarrow ~ 10 groups involved in chip design \Rightarrow several issues poorly covered \rightarrow newcomers ...
- Several demanding mid-term applications under way : \Rightarrow ILC (\sim 2015) \Rightarrow CBM (\gtrsim 2012) ⇒ etc.

 \Rightarrow Main R&D efforts in the coming years:

♦ Fast col. // architecture with integ. ADC & sparsification

Charge collection systems with improved S/N

- \diamond Fab. proc. with feature size < 0.25 μm ♦ Improved radiation tolerance (vs T)

 \diamond Complete thinning \sim 50 μm & try \lesssim 35 μm \triangleright Trade-off: P $_{diss.}$ / T $_{oper.}$ / cooling / mat.bud., ...

 $\triangleright \triangleright \triangleright \land$ Right time to combine & share knowledge & efforts (?)

 \hookrightarrow several spin-offs in imaging